Category : Data Analysis


Convert Jupyter notebooks to PDF

Jupyter lab is the next-generation web-based UI experience for Jupyter notebook users. It facilitates a tab-based programming interface that is highly extensible and interactive. It supports 40+ programming languages. We have already discussed how we can use Jupyter notebooks for interactive data analysis with SQL Server. With the help of Jupyter notebooks, we can keep headings, comments, code, output, and advanced charts and visuals in a single document in an orderly fashion. It helps Data Scientists and Data Analysts to have highly interactive presentations. In case you have already installed Jupyter notebooks and want to know how we can change the home directory for Jupyter notebooks, visit the blog “Change Jupyter Notebook startup folder on Windows and Mac OS “. Let’s discuss how we can Convert Jupyter notebooks to PDF documents directly from the web-browser or using nbconvert command from command prompt.

Convert Jupyter notebooks to PDF

During … More


Interactive Data Analysis with SQL Server using Jupyter Notebooks

In this post “Interactive Data Analysis with SQL Server using Jupyter Notebooks“, we will demonstrate how we can use Jupyter Notebooks for interactive data analysis with SQL Server. Jupyter notebooks are one of the most useful tools for any Data Scientist/Data Analyst. It supports 40+ programming languages and facilitates web-based interactive programming IDE. We can put comments, headings, codes, and output in one single document. This document maintains the context to the original data source which means we can re-execute the code whenever we need it. This feature facilitates Data scientists/Data analysts to play with the code during the presentations. Also, these notebooks are very handy in sharing and can be shared easily across the teams.

What is Jupyter Lab

Jupyter Lab is the next-generation web-based tool for Jupyter notebooks. It enables tab based programming model which is highly extensible. We can arrange multiple windows … More


Exploratory Data Analysis (EDA) using Python – Second step in Data Science and Machine Learning

In the previous post, “Tidy Data in Python – First Step in Data Science and Machine Learning”, we discussed the importance of the tidy data and its principles. In a Machine Learning project, once we have a tidy dataset in place, it is always recommended to perform EDA (Exploratory Data Analysis) on the underlying data before fitting it into a Machine Learning model. Let’s start understanding the importance of EDA and some basic EDA techniques which are very useful.

What is Exploratory Data Analysis (EDA)

Exploratory Data Analysis or EDA, is the process of organizing, plotting and summarizing the data to find trends, patterns, and outliers using statistical and visual methods. It takes input data from a tabular format and represents it in a graphical format which makes it more human interpretable. It is an important step in a Machine Learning/Data Science project which should be performed before … More


Python use case – Resampling time series data (Upsampling and downsampling) – SQL Server 2017

Resampling time series data in SQL Server using Python’s pandas library

In this post, we are going to learn how we can use the power of Python in SQL Server 2017 to resample time series data using Python’s pandas library. Sometimes, we get the sample data (observations) at a different frequency (higher or lower) than the required frequency level. In such kind of scenarios, we need to modify the frequency of the given samples as per the frequency of the required outcome. Modifying the frequency of time series data using T-SQL query becomes a tedious task especially when we need to perform upsampling as we need to generate more rows than what we have in the sample dataset. The Python’s pandas module has in-built capabilities for frequency conversion. With the help of pandas resample method, we can increase or decrease the time series observation frequencies with only few lines of … More


Tidy Data in Python – First Step in Data Science and Machine Learning 1

Most of the Data Science / Machine Learning projects follow the Pareto principle where we spend almost 80% of the time in data preparation and remaining 20% in choosing and training the appropriate ML model. Mostly, the datasets we get to create Machine Learning models are messy datasets and cannot be fitted into the model directly. We need to perform some data cleaning steps in order to get a dataset which then can be fitted into the model. We need to make sure that the data we are inputting into the model is a tidy data. Indeed, it is the first step in a Machine Learning / Data Science project. We may need to repeat the data cleaning process many times as we face new challenges and problems while cleaning the data. Data cleaning is one of the most important and time taking process a Data Scientist performs before … More